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ABSTRACT 

Let t ~ 1 and let n, M be natural numbers, n < M. Let A = (a~j) be an 
n • M matrix whose rows are orthonormal. Suppose that the ~2-norms of 
the columns of A are uniformly bounded. Namely, for all j 

�9 a 2 �9 < t .  
%j 

Using majorizing measure estimates we prove that for every e > 0 there 
exists a set I C {1, . . . ,  M} of cardinality at most 

t 2 n t  2 
C.  ~ �9 n . l o g - ~ -  

such that the matrix ~ .  A/T, where AI = (ai,j)jel, acts as a (1 +e)- 

isomorphism from ~ into ~I[. 

1. I n t r o d u c t i o n  

We cons ider  the  following problem,  posed  by  B. Kash in  and  L. Tzafr i r i  [K-T]: 

Let  e > 0 and let n, M be natural numbers,  n < M.  Given an n • M matr ix  A 

whose rows are  orthonormal, what  is the smallest cardinality L (A ,  e) o f  a subset  

I C { 1 , . . . ,  M }  so that  for a11 x E s 

(1.1) (1 - e ) .  [Ixll < ~ / [ - I [ R ,  ATxI[ <_ (1 + e ) .  [[x[[. 
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Here Rx: R M --+ ~M is the orthogonal projection onto the space span{ei] i E I}, 
where M {ei}i=l is the standard basis of R M. Throughout this paper we denote by 

[1"[[ the standard e2-norm and by [I[ the cardinality of a set I. The normalizing 

coefficient v/M/III  arises naturally in the case where all ai,j have the same ab- 

solute value. Indeed, in this case the norm of each row of the matrix R~A T is 

w .2  ~1/2 V/~IM. A-.~jEI ~ i , j ]  = 

This problem arises from the question of finding a "good" discretization of a 

given orthonormal system. Namely, let {r be an orthonormal system in 

the space L2(X, E, #). Find a finite set of points x l , . . . ,  Xm of smallest possible 

cardinality m such that the system 

of vectors in ~'~ will be close to an orthogonal system. 

Under an additional assumption that all the entries of A have the same absolute 

value 1/v/-M, Kashin and Tzafriri proved that 

(1.2) c . n2 log n. L(A, e) < -~ 

Moreover, their proof shows that a random subset I of this cardinality satisfies 

(1.1) with probability close to 1. Clearly, the estimate (1.2) is not optimal. The 

example of random selection of columns of a rectangular Walsh matrix, considered 

by Kashin and Tzafriri, suggests that the possible upper bound could be 

(1.3) L(A,s)  <_ C(s) . nlogn.  

From the other side, simple examples ([K-T], [R]) show that the estimate (1.3) 

is the best one can obtain by the random selection method. 

As was mentioned in [R], the Kashin and Tzafriri problem is dual to that  of 

finding an approximate John's decomposition. Entropy estimates used in [R] for 

the last problem enabled one to improve (1.2). More precisely, let t > 1 and 

suppose that  the matrix A satisfies 

for all j = 1 , . . . ,  M. Then 

L(A, r < C(r . t 2. n log 3 n. 
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In order to improve this estimate one can use majorizing measures instead of 

entropy estimates. The method of majorizing measures, developed by Talagrand 

([L-T], IT1]), is extremely useful in obtaining estimates of stochastic processes, 

related to random selection. A random process, similar to that arising in the 

Kashin and Tzafriri problem, was considered by Talagrand IT2] for the problem 

of embedding of a finite dimensional subspace of Lp into gpN. For this kind 

of process Talagrand introduced a special method of constructing majorizing 

measures. This method (s-separated trees) can be used to prove an estimate 

L(A,  c) <_ C(c) . t 2. nlogn- ( log log  n) 2 

for the Kashin and Tzafriri problem. It is unlikely that the (log logn) 2 factor 

can be removed by a modification of the s-separated trees method. However, 

using a different approach based on the explicit construction of a partition tree, 

we obtained a sharper estimate. More precisely, we prove the following 

THEOREM: Let  t >_ 1 and let A = ( a i , j )  be an n x M matrix,  whose rows are 

orthonormal. Suppose that  for all j 

\ 1/2 

Then for every s > 0 there exists a set I C {1 , . . . ,  M} so that  

t 2 nt  2 
(1.5) ]II < C .  ~-~ . n . l o g  ~2 , 

and for all x E R n 

(1.6) (1 - r  IIxll <_ ~ I ~  " IIR'ATxll  <- (1 + r IIxll. 

Throughout this paper C, c etc. denote absolute constants whose value may 

change from line to line. 

The main part of the proof is the proof of Lemma 1 below. Our original 

proof of this lemma used the direct construction of the majorizing measure. It 

included an explicit construction of a sequence of partitions and putting weights 

on the elements of each partition. This scheme is based on the Talagrand and 

Zinn's proof of the majorizing measure theorem of Fernique (Proposition 2.3 and 

Theorem 2.5 IT4]). The proof was rather involved, since we had to approximate 

the natural metric of a random process by a family of metrics depending on the 
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elements of the partition. After we had shown our proof to M. Talagrand, he 

pointed out that the explicit construction of the partition tree may be substituted 

by applying his general majorizing measure construction (Theorems 4.2, 4.3 and 

Proposition 4.4 IT4]). This resulted in a considerable simplification of the proof. 

We present here the argument suggested by Talagrand. 

By the duality between the Kashin and Tzafriri problem and approximate 

John's decompositions, we have the following 

COROLLARY: Let  B be a convex body  in R n and let E > O. There exists a convex 

body  K C IR n, so that d(K,  B)  <_ 1 + e and the number  o f  contact points  o f  K 

with its John ellipsoid is less than 

m(n , r  = C(E) . n .  logn. 

2. T h e  r a n d o m  select ion m e t h o d  

Clearly, we may assume that 

t 2 
M >__ C .  ~-~ - n . l o g n  

for some absolute constant C. 

The proof of the Theorem is based on the following iteration procedure. Let 

, {~i} i=1 of  A = (ai,j) be an n x M matrix satisfying (1.4), We define a sequence M 

independent Bernoulli variables taking values • with probability 1/2 and put 

I 1  = { i  I E i  = 1}. 

Then 

M 
(2.1) --M. 1 -  1 < 1 I a [ < - 2 -  

2 - -  - -  

with probability at least 1/4. Define 

W = A T R  n 

and denote by w(1) , . . . ,  w ( M )  the coordinates of a vector w. We have to estimate 

M 

sup 211R, A' xll2-11xlI2= sup 2.Zw2(O-Ew (i) 
xeB~  w6WnB~ i 6 ,  i = 1  

M 

= sup I E~iw2(i) . 
w 6 W n B M  i = 1  

Denote by EX the expectation of a random variable X. The key step of the proof 

is the following 
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LEMMA 1: Let W be an n-dimensional subspace of I~ M . Let e l , . .  �9 s be 

independent Bernoulli variables taking values +1 with probability 1/2. Then 

M 

E sup X:e ,~(g)  - c ~ .  Ilp.,:eff -+ e~ll 
wEWnB2 M i=1  

Here Pw : N M --+ R M is the orthogonal projection onto W. 

From (1.4) it follows tha t  

lip.,: e," -+ e~ II <- t V/~, 

so by L e m m a  1 and Chebychev ' s  inequality we have 

(2.2) sup 2 [IR,,A Txll 2 - I1.112 <_ c .  t .  ~f-~-~ �9 lv~0~M 
:cEB~ V l V *  

with probabi l i ty  more  than  3/4. Thus,  there exists a set I1 C { 1 , . . . , M }  

satisfying (2.1) and (2.2). 

Repea t ing  this procedure,  we obtain  a sequence of sets { 1 , . . . ,  M} = I0 D I1 D 

. . .  D Is so tha t  

and 

(2.4) sup 2 k IIR,kATxll ~ - 2  k - 1  IIRIk_tATxlI21 ~ C . t .  ~ / 2  k " v/1ogl lk_, l .  
xEB~ 

Indeed, at  each step of induction we have 

1 3 
(2.5) ~ Ilxll <_ 2 (k-l)/2 IIRI~_IATzll <_ -~ Ilxll. 

Assume for simplici ty tha t  Ik-1  = { 1 , . . . , m }  for some m < M. Let  Wk = 

RIk_IA T N M c  l~ TM and let Pw~: R m --+ II~ TM be the or thogonal  project ion onto 

Wk. Then  

3 m 2(k-1)/2Rrk_tATB ~ C -~B 2 0 Wk, 
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so for a random set Ik  C {1, . . . ,  m} we have 
m 

T 2 E sup (2~IIRI~ATxlI~-2~-'IIRI~_~A ~II)<E sup E ~ , ~ ( i )  
xeB~ weaB• NWk i=1 

m 

<-gE sup ~ ( i ) .  
- 4 w e B p n W k  7=1 

To apply Lemma 1 we need to compute IIPwk : gP -~ ePll. By (2.5) we have 

( )T e7 2 (k+~/2 ~--~ J[Pwk: ~'~ ~ i'~lJ <- 2 .  2 ( k -1 ) /2RIk_~AT  : ~M _~ <_ . t .  . 

Now (2.4) follows from Lemma 1 and Chebychev's inequality. 

Summing up inequalities (2.4) we get 

sup 12 8 IIR,sA~xll ~ - I lxl l  ~ < c.t. ~ M @  ~/log IX~l 
(2.6) 

_ < C . t .  n . log2-- V. 

We proceed as long as the last expression is smaller than e/2. In this case 

t 2 n t  2 M t 2 n t  2 
c-~--~, n .  log-~--_< 2--- 2 _< C-  ~ 7 . n . l o g  e2 .  

From (2.3) it follows that 

2 8 

so we obtain (1.5) and 

4) ~151~ y, 

]I8[' 1 -  c . ~ 7 - n . l o g n  _<2 8<_ ]i~l. 

Then, (2.6) implies that 

L I sup �9 I IRIsA Txl l  2 II~ll 2 < 

and this completes the proof of the Theorem. | 

R e m a r k :  The random selection method was first used by Talagrand [T3] to 

simplify the construction of embedding of a finite dimensional subspace of L1 into 

glN. The original construction of Bourgain, Lindenstrauss and Milman used the 

empirical distribution method instead. The advantage of the random selection 

is that it enables one to deal with random processes having a subgaussian tail 

estimate, rather than with general Bernoulli processes. 
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3. C o n s t r u c t i o n  o f  t h e  m a j o r i z i n g  m e a s u r e  

The proof of Lemma 1 uses the majorizing measure theorem of Talagrand [T1], 

IT4]. This theorem provides a bound to 

s sup Xt 
tET 

for a subgaussian process Xt  indexed by points of a metic space T with a metric 

d through the geometry of this space. However, it turns out that  the space T 

does not have to be assumed metric. The same proof works in the case when d 

is a quasimetric, i.e. if there exists a constant L such that  for any t, t, s C T 

d(t, t-) <_ L .  (d(t, s) + d(s, t~). 

We use the following version of the 

MAJORIZING MEASURE THEOREM: Let (T,d) be a quasimetric space. Let 

(Xt)teT be a collection of mean 0 random variables with the subgaussian tail 

estimate 

"P {IXt - X~l > a} <_ exp - c  

for ali a > O. Let r > 1 and let k0 be a natural  number so that T can be covered 
�9 k c~o by one ball of radius r -k~ Let { ~ } k=ko be a sequence of functions from T to 

R +, uniformly bounded by a constant depending only on r. Assume that there 

exists a > 0 so that for any k the functions ~k satisfy the following condition: 

for any s E T and for any points t l , . . .  , t N  E B r - k ( 8  ) with mutual distances 
at least r - k - 1  one  h a s  

(3.1) 

Then 

max  k+2(tj) >  k(s) + lv/ N. 
j=I, . . . ,N 

Esup  Xt < C(r,L) -a -1. 
tET 

This version may be obtained as a combination of the majorizing measure 

theorem of Fernique [L-T] and the general majorizing measure construction of 

Talagrand (Theorems 2.1 and 2.2 [T1] or Theorems 4.2, 4.3 and Proposition 4.4 

[T4]). 

To prove Lemma 1 we need some estimates of covering numbers�9 Denote by 

N(B ,  d, e) the e-entropy of B, i.e. the number of e-balls in the (quasi-) metric d 

needed to cover the body B. We use the following 



150 M. R U D E L S O N  Isr. J .  M a t h .  

LEMMA 2: Let W be an n-dimensional subspace of ~M and let Pw be the 
orthogonal projection onto W. 

(1) e~/logN(B M n W, ll 'lG,e) <_ C.  IlPw: e~' -~ cull. ~/logM. 

(2) Let IIlIc be a norm de~ned by 

Then 

[ M \1/2 
eV/I~162 AW'I I ' I I e ' e ) -<  c llPw: gff ~ gMl[ " [ Ea~),=a 

= C" E E ( P w g ,  e,)2a 
~=1 

Proof of Lemma 1: Denote 

Proof: Both statements follow from the dual Sudakov minoration proved by 

Pajor and Tomczak-Jaegermann [P-T J]. 

(1) Let g be the standard Gaussian vector in II~ M . Then Pwg is the standard 

Gaussian vector in tile space W. So, 

EV/IogN(B ~ o w ,  ll-Lloc,e) _< C . E  IIPwgll~ = C . E  max I<Pwg, e~)l 
j = ]  ..... M 

< C -  v / logM - max IIPwejtl = C- v / logM - IlPw: gM ~ e~ll. . 
3=I,...,M 

(2) Again dual Sudakov minoration gives 

1/2 ]/2 / M  \ 
. 

i - - 1 . . . , M  \,--, } 

W] = B M f? W. 

We have to estimate the expectation of the supremum over all w E W] of a 

random process 
M 

y~ = ~ ~,w2(i) �9 

i----1 

The process V~ has a subgaussian tail estimate 

(-c_ a 2 \ 
P {v~ - v .  > a} < exp / 

- \ d 2 ( w , ~ ) / '  



Vol. 111, 1999 

where 

ALMOST ORTt tOGONAL SUBMATRICES 

1/2 

151 

Notice tha t  0~ can be considered as a metric  on the set 

{(w2(1),... ,w2(M)) I w -- (w(1) , . . .  ,w(M)) E Wl}. 

However, it is not a metr ic  on W1 itself. We shall es t imate  the function 0~ on W1 

by a quasimetr ic ,  which is easier to control: 

Since 

~=1 

we have a generalized tr iangle inequality for d. Namely, for all u, w, ~ E W 

(3.2) d(w, ~ )  <_ 4- (d(w, u) + d(u, ~)). 

The  balls in the quasimetr ic  d are not convex. However, we have the following 

LEMMA 3: For all w C W and p > 0 

conv Bp(w) C B4p(W). 

Here we denote  by Bp(w) a p-ball in tile quasimetr ic  d. 

Proof: Note tha t  since for all u E Bp(w) 

~ (u(i)-w(i))2w2(i) <_p and ~ (u( i ) -w(i)  <_ (v"2p) 1/2, 
i= l  i= l  

the same inequalities hold also for all u C cony Bo(w ). Since for all a, b E R, 

a 2 + b 2 <_ 4a 2 + 2(a - b) 2, for any u E conv Bp(w) we have 

<4p. II 
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Denote 

Q - - I IPw:  ex ~ -+ e~l l .  

Let now r be a natural number to be chosen later. Let ko and kl be the largest 

natural numbers so that 

r -k~ >_Q and r -k'  >_Q/x/n. 

Then ka - k0 _< (2togr) -1 logn. Notice that W1 C r -k~ (B M NW) C B.-~0 (0). 

Define functions ~k: W1 ~ R by 

k - ko if  k = k o , .  �9 �9 kl, ~k(W) =min{llull 2 u E convBsr-k(w)} + l o g M '  

1 k ~/n.  log(1 + 2v~r  z) 
: i  + + z=kl Q.  lv/i-~M , if k > kl. 

For any w C W1 the sequence {~k(W)}k~=ko is nonnegative nondecreasing and 
bounded by an absolute constant depending only on r. Indeed, if k _< kl then 

1 log  n 
Tk(w) < 1 + -  

2 log r log M" 

For k > kl we have 

1 ~ r -t ~r log(1 + 2v/2r t) 
~k(w) _< 1 + ~ + �9 ~ _ ~  

l=kt  

1 v'~ v/log( 1 + 2V/2~1) 
< i + ~ + ~ ( ~ ) - ~ - ~ -  - - .  
- Q ~ / l o g  M 

< C(r).  

The last inequality follows from the definition of kl. 
W oo To prove Lemma 1 we have to show that condition (3.1) holds for {~ok( )}k=ko 

with a = ( c . Q - ~ )  -1. Let x E W1 and suppose that the points Xl , . . .  ,XN E 
Br- ,  (x) satisfy 

d(xj, xl) ~_ r -k-1 for all j ~ I. 

Assume that k > kl - 1. Since 

d(u,w) < (u2(i) + w2(i) 
i= l  

sup 
i----1,...,M 

I~(i) - w(i) i  _< v ~ .  Ib - ~,11oo, 
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the condition (3.1) follows from a simple volume estimate: 

(W1, H.[[oo, ? ~ - k - l " ~ ( .  WI,'['][, r-k-l~ N <_N(WI,d,r-k-1) <_ N v/~ /<_N v~ ] 

( < 1 + ~ }  

Suppose now that k0 _< k < kl - 1. For j -- 1 , . . . ,  N denote by zj the point of 

convBs~-k-2(xj) for which the minimum of IIz]l is attained and denote by u the 

similar point of conv Bs~-k (x). By (3.2) and Lemma 3 we have for all j ~ l 

d(xj,xt) <_ 16. (d(xj,zj) + d(zj,zt) + d(zt,xt)) <_ 16. (16'  r - ' - '  + d(zj,zt>), 

l _ - k - 1  if r > 512. Under the same assumption on r we have so d(zj, zl) > 5' 

~(zj,x) <_ 4(e(zj,xj) + e(x~,x)) <_ s~ -~. 

Denote 

e = m a x  I]zjl] 2 - I I ~ l l  2 j=I,...,N 
We have to prove that 

(3 .3)  ~-k. c .Q.  lvdJ~ N _< j=l,...,Nmax ~k+~(X~)--~k(X) ---- 0+log----- ~ .  

Since 
zj +u 

e convBs~-k(x ) and Ilull < Ilzjll, 

we have 

~ 2  = ~ iiz~l12+ i1.112_ < ilzjll 2_  < iiz~ll 2_  ilull~ 

SO 

(3.4) )lzj - ull < 2v~. 

Thus, N is bounded by the l r - k - L e n t r o p y  of the set K = u + 2v~B M V1W in 

the quasimetric d. To estimate this entropy we partition the set K into S disjoint 

subsets having diameter less than l~r-k-lO -1/2 in the g~ metric. By part (1) 

of Lemma 2 we may assume that 

(3 .5 )  
16 
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If S > v/-N, we are done, because in this case (3.5) implies (3.3). Suppose that 

S < v/N. Then there exists an element of the partition containing at least vfN 

points z i. Let J C {1 . . . . .  N} be the set of the indices of these points. We have 

(3.6) Ilzj - zl[[~ < l r - k - I '  0 -1/2 
- 16 

l - - k - I  for all j,I E .1, j r I. Since d(z3,zt) > 7r . we have 

(3.7) 

<_ Z + 
i=1  

M 

< E (z j ( i ) -  zt(i)) 2. [4u2(i)+z2(i).l{,llz~(,)l>21u(,)l}(i ) 
; t=l  

+ z~(i)'ll~ll:,(,)l>_zl~(Oi}(i) ]" 

Then (3.4) implies 
M 

(3.8) ~ z~(i) �9 l(,ll~,l>m(,)l)(i) <_ 4 
~=1 

zj(i) - u(i)) 2 < 160. Z 

Combining (3.6) and (3.8) we get that (3.7) is bounded by 

/0_1/2 \ 2  M 

z = l  

Thus, for all j, l E J, j r l we have 

~t=l - -  8 

Then part (2) of Lemma 2 implies 

~r -k-1  v/log ]J I C v ~ . Q .  u2(i) Cv/-O.Q. <_ <_ 

Since for all 0 > 0 
1 

2 , / 0 <  M . O + 

we get 
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