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ABSTRACT
Let £ > 1 and let n, M be natural numbers, n < M. Let A = (a; ;) be an
n X M matrix whose rows are orthonormal. Suppose that the £2-norms of
the columns of A are uniformly bounded. Namely, for all j

— [ 1/2
2
re <Z “m‘) st

=1
Using majorizing measure estimates we prove that for every € > 0 there

exists a set 1 C {1,..., M} of cardinality at most

t2 nt?

such that the matrix \/M/|I|- AT, where A; = (ai,;)je1, acts as a (1 +¢)-
. ) T
isomorphism from £} into £; .

1. Introduction

We consider the following problem, posed by B. Kashin and L. Tzafriri [K-TJ:
Let € > 0 and let n, M be natural numbers, n < M. Given an n X M matrix A

whose rows are orthonormal, what is the smallest cardinality L(A,¢) of a subset
Ic{l,...,M} so that for all z € £3

(L) (1=2)- ol < {77 [RuATs] < 1+ 2) .
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Here R;: RM — RM is the orthogonal projection onto the space span{e;| i € I},
where {e;}}, is the standard basis of RM . Throughout this paper we denote by
||| the standard £3-norm and by |I| the cardinality of a set I. The normalizing
coefficient 1/M/|I| arises naturally in the case where all a; ; have the same ab-
solute value. Indeed, in this case the norm of each row of the matrix R; AT is
(Xjerai)? = VM.

This problem arises from the question of finding a “good” discretization of a
given orthonormal system. Namely, let {¢;(w)}?.; be an orthonormal system in
the space L2(X, %, 1). Find a finite set of points z1,..., 2., of smallest possible
cardinality m such that the system

{(@i(z1), di(T2), ..., di(zm)) }ims

of vectors in R™ will be close to an orthogonal system.
Under an additional assumption that all the entries of A have the same absolute
value 1/v M, Kashin and Tzafriri proved that

(1.2) L(A,e) < 6% -n?logn.

Moreover, their proof shows that a random subset I of this cardinality satisfies
(1.1) with probability close to 1. Clearly, the estimate (1.2) is not optimal. The
example of random selection of columns of a rectangular Walsh matrix, considered
by Kashin and Tzafriri, suggests that the possible upper bound could be

(1.3) L(A,e) < C(e) -nlogn.

From the other side, simple examples ([K-T}], [R]) show that the estimate (1.3)
is the best one can obtain by the random selection method.

As was mentioned in [R], the Kashin and Tzafriri problem is dual to that of
finding an approximate John's decomposition. Entropy estimates used in [R) for
the last problem enabled one to improve (1.2). More precisely, let ¢ > 1 and
suppose that the matrix A satisfies

forall  =1,...,M. Then

L(A,e) < Cle) - 2 - nlog® n.
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In order to improve this estimate one can use majorizing measures instead of
entropy estimates. The method of majorizing measures, developed by Talagrand
([L-T], [T1]), is extremely useful in obtaining estimates of stochastic processes,
related to random selection. A random process, similar to that arising in the
Kashin and Tzafriri problem, was considered by Talagrand [T2] for the problem
of embedding of a finite dimensional subspace of L, into E;,V . For this kind
of process Talagrand introduced a special method of constructing majorizing
measures. This method (s-separated trees) can be used to prove an estimate

L(A,e) < C(e) - t* - nlogn - (loglogn)?

for the Kashin and Tzafriri problem. It is unlikely that the (loglogn)? factor
can be removed by a modification of the s-separated trees method. However,
using a different approach based on the explicit construction of a partition tree,
we obtained a sharper estimate. More precisely, we prove the following

THEOREM: Let t > 1 and let A = (a; ;) be an n x M matrix, whose rows are
orthonormal. Suppose that for all j

n 1/2
(1.4) —nM— . (Za%) <t

=1

Then for every € > 0 there exists a set I C {1,..., M} so that

t? nt?
(1.5) |I|§C~€—2-n~log€—2,
and for all z € R
M T
(1.6) (1-¢)llzll < il |RrA x| < (1 +¢) - |||l -

Throughout this paper C,c etc. denote absolute constants whose value may
change from line to line.

The main part of the proof is the proof of Lemma 1 below. Our original
proof of this lemma used the direct construction of the majorizing measure. It
included an explicit construction of a sequence of partitions and putting weights
on the elements of each partition. This scheme is based on the Talagrand and
Zinn’s proof of the majorizing measure theorem of Fernique (Proposition 2.3 and
Theorem 2.5 [T4]). The proof was rather involved, since we had to approximate
the natural metric of a random process by a family of metrics depending on the
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elements of the partition. After we had shown our proof to M. Talagrand, he
pointed out that the explicit construction of the partition tree may be substituted
by applying his general majorizing measure construction (Theorems 4.2, 4.3 and
Proposition 4.4 [T4]). This resulted in a considerable simplification of the proof.
‘We present here the argument suggested by Talagrand.

By the duality between the Kashin and Tzafriri problem and approximate
John's decompositions, we have the following

COROLLARY: Let B be a convex body in R™ and let € > 0. There exists a convex
body K C R", so that d(K, B) < 1+ € and the number of contact points of K
with its John ellipsoid is less than

m(n,e) = C(e) - n - logn.

2. The random selection method

Clearly, we may assume that
2
MZC-€—2-n-logn
for some absolute constant C.
The proof of the Theorem is based on the following iteration procedure. Let
A = (a; ;) be an n x M matrix , satisfying (1.4), We define a sequence {¢;}M; of
independent Bernoulli variables taking values +1 with probability 1/2 and put

Il:{ll Eizl}.

Then
(2.1) . (1 - \/L.M) <|nl<

with probability at least 1/4. Define

M
2

W = ATR"
and denote by w(1),...,w(M) the coordinates of a vector w. We have to estimate
, M
sup \2 ||R1AT$|| - ||:1:||2‘ = sup |2- ZwQ(i) - sz(i)

z€ By weWNBM iel i=1

M
= sup eqw?(3)].

’UJEWF]B%W i=1

Denote by EX the expectation of a random variable X. The key step of the proof
is the following
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LeEMMA 1: Let W be an n-dimensional subspace of RM . Let €1,...,em be
independent Bernoulli variables taking values £1 with probability 1/2. Then

M

E sup gaw’(i)| < Cy/log M - ||Pw - ) — 2}]|.
1

wEWNWBy

=

Here Py : RM — RM is the orthogonal projection onto W.

From (1.4) it follows that

||PW:6{”—>834||§t-,/%,

so by Lemma 1 and Chebychev’s inequality we have

(2.2) sup }2||R,1AT3:||2 - Hz||2‘ <C-t- \/% Jlog M

z€ B}

with probability more than 3/4. Thus, there exists a set Iy C {1,...,M}
satisfying (2.1) and (2.2).

Repeating this procedure, we obtain a sequence of sets {1,... , M} =, D 1 D
<-+ D I, so that

x| L]

(2.3) L. (1—%) < llen] < 1

and

(2.4) sup |2k Ry ATz 251 ||R1k_lATac||zl <Cote |- Jlog el
c€Bp M2k
Indeed, at each step of induction we have
1 (k—1)/2 T 3
(2.5) 7 lell <2 | Br_, ATa|| < 3 llell-
Assume for simplicity that Ir_1 = {1,...,m} for some m < M. Let W} =
Ry, ,ATRM C R™ and let Py,: R™ — R™ be the orthogonal projection onto

Wi. Then

otk=D/2R, ATBP C gB{," N Wr,
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so for a random set I C {1,...,m} we have

E sup (2[R A"alf' ~ 24 i, A7) <B pWZ
m

9
<-E sup g;w ().
4 w€B;"ﬂWk; w (0

To apply Lemma 1 we need to compute || Py, : £ — £3¢||. By (2.5) we have

(20728, AT) L gl <200 [

Now (2.4) follows from Lemma 1 and Chebychev’s inequality.

1P 67— 5] < 2-

Summing up inequalities (2.4) we get

2° | Re, ATz)” - |la| ‘<c - 1/]\4’/‘23-\/1og|131

n M
<C-t- . -
SC s Vg

We proceed as long as the last expression is smaller than €/2. In this case

t2 nt? M t2 nt?

sup
z€B}
(2.6)

From (2.3) it follows that

M 4 M
= 1-—]|<im<z,
22 ( |Is|>‘I <%

so we obtain (1.5) and

M £2 )‘”2 M
e ll=|c-—=-n-logn <2°< .
7] ( ( ez e R TA

Then, (2.6) implies that

sup R;, AT
A
and this completes the proof of the Theorem. |

Remark: The random selection method was first used by Talagrand [T3] to
simplify the construction of embedding of a finite dimensional subspace of L; into
¢Y. The original construction of Bourgain, Lindenstrauss and Milman used the
empirical distribution method instead. The advantage of the random selection
is that it enables one to deal with random processes having a subgaussian tail
estimate, rather than with general Bernoulli processes.
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3. Construction of the majorizing measure

The proof of Lemma 1 uses the majorizing measure theorem of Talagrand [T1],
[T4]. This theorem provides a bound to

Esup X,
teT
for a subgaussian process X, indexed by points of a metic space T with a metric
d through the geometry of this space. However, it turns out that the space T
does not have to be assumed metric. The same proof works in the case when d
is a quasimetric, i.e. if there exists a constant L such that for any ¢,{,s € T

d(t,t) < L-(d(t,s) +d(s,1)).

We use the following version of the

MAJORIZING MEASURE THEOREM: Let (T,d) be a quasimetric space. Let
(X¢)ter be a collection of mean 0 random variables with the subgaussian tail
estimate

P{|X, ~ Xl > a} < exp (—m) ,

for alla > 0. Let r > 1 and let ky be a natural number so that T' can be covered
by one ball of radius r=%. Let {¢x}i2y, be a sequence of functions from T to
R*, uniformly bounded by a constant depending only on r. Assume that there
exists ¢ > 0 so that for any k the functions py satisfy the following condition:

for any s € T and for any points t,...,ty € B,-x(s) with mutual distances
at least r—*=1 one has
{3.1) ]__nllaxN Praalt;) > pr(s) +o-r7F . /logN.
Then

Esup X; < C{r,L)-07%.
teT

This version may be obtained as a combination of the majorizing measure
theorem of Fernique [L-T] and the general majorizing measure construction of
Talagrand (Theorems 2.1 and 2.2 [T1] or Theorems 4.2, 4.3 and Proposition 4.4
[T4)).

To prove Lemma 1 we need some estimates of covering numbers. Denote by
N(B,d,¢) the e-entropy of B, i.e. the number of e-balls in the (quasi-) metric d
needed to cover the body B. We use the following
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LEMMA 2: Let W be an n-dimensional subspace of RM and let Py be the
orthogonal projection onto W.

(1) ey/log N(BY AW, |1, €) < C |[Pw - 6 = &1]| - /Iog .
(2) Let ||l be a norm defined by

M 1/2
llzllg = (Zr'z(im?) :

1=1

Then

1/2
e\/log N(BM W, ||z .&) <C - ||Pw: &' - &)1 - (Z )

=1

Proof: Both statements follow from the dual Sudakov minoration proved by
Pajor and Tomczak-Jaegermann [P-TJ).

(1) Let g be the standard Gaussian vector in RM . Then Py g is the standard
Gaussian vector in the space W. So,

e\/log N(BY NW,[Hl€) < C-E | Puwglly = C-E_max |(Pwg,e,)
<C- \/IogM _max IPwesll =C-iogM - ||Pw: & > &'},

.”,

(2) Again dual Sudakov minoration gives

1/2
e\flog N(BY N W,z .€) < CE | Pwgl; < C - (E | Pwgl?)

M 1/2 M 1/2
_ 2 2 2
=C- (IE Z(ng,e,) ai) <C- ax lPwell - (Z a,) . [}

=/ 1=1

Proof of Lemma 1: Denote
Wi =BYnw.

We have to estimate the expectation of the supremum over all w € Wi of a

random process
M

Vy = Z g, w?(4).

=1
The process V,, has a subgaussian tail estimate

a2
P{Vy—-Vy>al <exp|-c——],
{ } p( d2(w.tb))
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where

=1

Notice that d can be considered as a metric on the set
{(w?(1),...,w*(M)) | w=(w(l),...,w(M)) € W}.

However, it is not a metric on W itself. We shall estimate the function d on W,
by a quasimetric, which is easier to control:

1 M ) 1/2
—2d(w,w) < d(w,w) = (Z (w(i) - zD(i)) : (wz(z') + 11‘12(1'))) .

i=1

M 1/2
d(w, ) = (Z 3 (w0) - 90) () + B + (wli) - m(i))"’))
<— - (dlw, w) + w - Bl ) < (1+V2) - d(w, D)
we have a generalized triangle inequality for d. Namely, for all v, w,w e W
(3.2) d(w,w) < 4-{d(w,u) + d(u,w)).
The balls in the quasimetric d are not convex. However, we have the following
LEMMA 3: Foralwe W andp >0
conv B,(w) C Byy(w).

Here we denote by B,(w) a p-ball in the quasimetric d.

Proof: Note that since for all u € B,(w)

M , 1/2 M . 1/4
(Z (utd) - w(i)) w2(i)> < pand (Z (uti) - w(i)) ) < (V20)'/2,

1=1 =1
the same inequalities hold also for all u € conv B,(w). Since for all a,b € R,
a? + b2 < 4a® + 2(a — b)?, for any u € conv B,(w) we have

1/2
d(u,w g( (wt) - w@)) " (4w2(i>+2(u(i>—w(i)>2))
M , 1/2 M A
<2- (Z( ) ~w2(i)> +V2. (Z (u(i) —w(i)) )

=1 i=1

<4p. |
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Denote
Q=|Pw:e) - .

Let now r be a natural number to be chosen later. Let kg and k; be the largest
natural numbers so that

r7h >Q and r7F >Q/v/n.

Then k; — ko < (2logr)~!logn. Notice that Wy C =% . (BM nW) C B,—x,(0).
Define functions @x: W7 = R by

or(w) = min{|Juf® ‘ u € conv Bg,-«x(w)} + IICO;]I:;, it k=kg,..., ki,
k n-log(l + 2v2rt
! \/ cl ) ifk>k.

=1 =L,
pr(w) =1+ 2logr + Zk: " Q- iegM ’

=k,

For any w € W the sequence {p(w)}g2,, is nonnegative nondecreasing and
bounded by an absolute constant depending only on r. Indeed, if £ < k; then

1 logn
2logr logM’

or(w) <1+

For k > k; we have

\/n -log(1 + 2v/2rt)

1 oo}
or(w) <1+ +y rt

2logr = Q- VlegM
1 y/log(1 + 2y/2rk:
§1+————+c(r)-r—k“[§- a )SC(?').
2logr Q Vieg M

The last inequality follows from the definition of k;.

To prove Lemma 1 we have to show that condition (3.1) holds for {yk(w)}32,
with ¢ = (c-Q-v/log M)~1. Let z € W, and suppose that the points z1,...,zn €
B, -+{(z) satisfy

d(z;,x) > k1 for all j # 1.

Assume that & > k; — 1. Since

M

1/2
d(u,w) < (Z (u200) + w%’))) - sup[u(i) = w(i)| < V2- u - wll,

= 1,..M
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the condition (3.1) follows from a simple volume estimate:

N <N(Wy,d,r™*1) 5N<W1,H-Iloo,%> <N (Wl’“ I —\;2'1)
<1+ 2\f>

Suppose now that kg < k < k) —1. For j = 1,..., N denote by z; the point of
conv Bg,-x-2(z;) for which the minimum of ||z|| is attained and denote by u the
similar point of conv Bg,-x(z). By (3.2) and Lemma 3 we have for all j # [

d(aj,21) <16+ (d(z;, ) +d(z;, 2) + d(a,m) ) <16+ (1677572 + d(z, 2)),

so d(z;,z1) > $r~*~1if r > 512. Under the same assumption on r we have

d(zj,z) < 4(d(zj,xj) + d(:q,x)) < 8rk,

Denote
6= jmax szll — Jlulf®.

,,,,,

We have to prove that

- -1 2
(33) r "~(c-Q- \/logM) -\/IOgNszr{l{:}?chHz(wj)—wk(w) =0+m-

Since N
9= € conv By, () and |ul] < |1z,

we have

2i — U 2 2 +u Zit+u 2

- 2 j 2

]2 =—||ZJ|I +5 || I1° - || Z— Sllzjll - 12 < Ngll* = ull®,
S0
(3.4) I2; — ul| < 2V8.

Thus, N is bounded by the %r‘k_l-entropy of the set K =u+ 2\/§B§’I NW in
the quasimetric d. To estimate this entropy we partition the set X into S disjoint
subsets having diameter less than Jr=%¥=1=1/2 in the £, metric. By part (1)
of Lemma 2 we may assume that

(3.5) -1~¥'"‘°_1 972 logS < ¢-Q - VB /log M.

16



154 M. RUDELSON Isr. J. Math.

If S > /N, we are done, because in this case (3.5) implies (3.3). Suppose that
S < V/N. Then there exists an element of the partition containing at least VN
points z;. Let J C {1,..., N} be the set of the indices of these points. We have

(3.6) ey = 21l < gor 02
for all 5,1 € J, j # L. Since d(z;,2) > 377%~1, we have
(3.7)
1 ey 2 & LT 205
(57" ) SZ( ) = (i ) '(ZJ(Z)+31 (l))
1;{1 )
< ( ) ' [4“2(i) 250 Ll wszion @

=1
‘72 y . y
2 (0) 1{:||:l(z>|zziu(i>l}(z) ]
Then (3.4) implies
M

2
'72 y . ] < 2 (2 - ]
(3.8) _]~](z) i sztutony ) < 4 S (~,(z) u(z)) < 166.
= 1)1, 1220u()1}

Combining (3.6) and (3.8) we get that (3.7) is bounded by

_ 2 M
2160 £ ) RN CURRT) !
1=1

Thus, for all j,l € J, j # [ we have

M , 1/2 ,

(Z (220 - 2(9) ~u2(i>) > g
1=1

Then part (2) of Lemma 2 implies

M 1/2
ér—k”\/WSC\/é.Q (Zum)) <CvE-Q.
=1

Since for all 6 > 0

1
2vV0 < \logM - + —,
Vo < \/log + Tog 11

we get
_Iy/logNS%r YWiog|J| < C-Q - \/logM - <€+—M).
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